Final examination 2014 M.Math. II — Commutative algebra

Instructor — Pratyusha Chattopadhyay Throughout R stands for a commutative ring with $1 \neq 0$.

Group A

Answer any two questions from group A

Q 1.

Let R be a ring and R[X] be the polynomial ring. (a) Let $f = a_0 + a_1 X + \dots + a_n X^n \in R[X]$. Show that f is nilpotent in R[X] if and only if a_0, a_1, \dots, a_n are nilpotent in R. (b) Show that the Jacobson radical and nilradical coincide for the polynomial ring R[X].

Q 2.

Let M be an R-module and M_1, M_2, \ldots, M_n be submodules of M. Then $M = M_1 \oplus M_2 \oplus \cdots \oplus M_n$ if and only if (i) $M = M_1 + M_2 + \cdots + M_n$ and (ii) $M_i \cap (M_1 + \cdots + M_{i-1} + M_{i+1} + \cdots + M_n) = 0$, for $1 \le i \le n$.

Q 3.

A multiplicatively closed subset S of the ring R is called saturated if $ab \in S$ implies $a \in S$ and $b \in S$. Show that S is saturated if and only if R - S is union of prime ideals.

Group B

Answer any three questions from group B

Q 4.

Let R be a subring of S and S be integral over R.

(a) Show that if $x \in R$ is a unit in S then it is a unit in R.

(b) Show that the Jacobson radical of R is the contraction of the Jacobson radical of S.

Q 5.

Let $R \subseteq S$ be rings. Let f(X), g(X) be monic polynomials in S[X]. Show that if the product f(X)g(X) has coefficients integral over R, then f(X)and g(X) have coefficients integral over R.

Q 6.

Let R be a domain and a valuation ring of its field of fractions K.

(a) Show that R is a local ring.

(b) Show that R is integrally closed in K.

Q 7.

Let R be a domain with K be its field of fractions and $R \neq K$. Prove that the following are equivalent

(i) R is a valuation ring in which every prime ideal is maximal.

(ii) There are no rings properly between R and K.

Group C

Answer any three questions from group C

Q 8.

Show that in a Noetherian ring every irreducible ideal is primary.

Q 9.

Let M be a Noetherian R module. Let M[X] denote the set of all polynomials in X whose coefficients are in M. Show that M[X] is a Noetherian R[X] module.

Q 10.

Show that in an Artin ring the nilradical is nilpotent.

Q 11.

Let k be a field and R be a finitely generated k algebra. Show that the following are equivalent:

(i) R is Artinian,

(ii) R is a finite k algebra.

Group D

Answer all questions from group D

Q 12.

Show that in a Noetherian ring every prime ideal has finite height.

Q 13.

Let (R, \mathfrak{m}) be Noetherian local ring. Show that $\dim(R) \leq \dim_K(\mathfrak{m}/\mathfrak{m}^2)$. Dimension on the right hand side is the dimension of $(\mathfrak{m}/\mathfrak{m}^2)$ as a vector space over the residue field R/\mathfrak{m} .

Q 14.

Let $R \subset S$ be domains, S be integral over R and R be integrally closed. Let q be a prime ideal of S and $p = q \cap R$. Show that $\dim(R_p) = \dim(S_q)$.